Finite Gap Jacobi Matrices, I. The Isospectral Torus

نویسندگان

  • Jacob S. Christiansen
  • Maxim Zinchenko
چکیده

Let e⊂ R be a finite union of disjoint closed intervals. In the study of orthogonal polynomials on the real line with measures whose essential support is e, a fundamental role is played by the isospectral torus. In this paper, we use a covering map formalism to define and study this isospectral torus. Our goal is to make a coherent presentation of properties and bounds for this special class as a tool for ourselves and others to study perturbations. One important result is the expression of Jost functions for the torus in terms of theta functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[ m at h . SP ] 3 1 Ju l 2 01 1 FINITE GAP JACOBI MATRICES , III . BEYOND THE SZEGŐ CLASS

Let e ⊂ R be a finite union of l + 1 disjoint closed intervals and denote by ωj the harmonic measure of the j leftmost bands. The frequency module for e is the set of all integral combinations of ω1, . . . , ωl. Let {ãn, b̃n}n=1 be a point in the isospectral torus for e and p̃n its orthogonal polynomials. Let {an, bn}n=1 be a half-line Jacobi matrix with an = ãn+δan, bn = b̃n+δbn. Suppose

متن کامل

Periodic GMP Matrices

We recall criteria on the spectrum of Jacobi matrices such that the corresponding isospectral torus consists of periodic operators. Motivated by those known results for Jacobi matrices, we define a new class of operators called GMP matrices. They form a certain Generalization of matrices related to the strong Moment Problem. This class allows us to give a parametrization of almost periodic fini...

متن کامل

Finite Gap Jacobi Matrices, III. Beyond the Szegő Class

Let e ⊂ R be a finite union of + 1 disjoint closed intervals, and denote by ωj the harmonic measure of the j left-most bands. The frequency module for e is the set of all integral combinations of ω1, . . . ,ω . Let {ãn, b̃n}∞n=−∞ be a point in the isospectral torus for e and p̃n its orthogonal polynomials. Let {an, bn}∞n=1 be a half-line Jacobi matrix with an = ãn + δan, bn = b̃n + δbn. Suppose ∞ ...

متن کامل

Commutation Methods for Jacobi Operators

We offer two methods of inserting eigenvalues into spectral gaps of a given background Jacobi operator: The single commutation method which introduces eigenvalues into the lowest spectral gap of a given semi-bounded background Jacobi operator and the double commutation method which inserts eigenvalues into arbitrary spectral gaps. Moreover, we prove unitary equivalence of the commuted operators...

متن کامل

Critical Lieb-thirring Bounds in Gaps and the Generalized Nevai Conjecture for Finite Gap Jacobi Matrices

We prove bounds of the form ∑ e∈I∩σd(H ) dist ( e, σe(H ) )1/2 ≤ L-norm of a perturbation, where I is a gap. Included are gaps in continuum one-dimensional periodic Schrödinger operators and finite gap Jacobi matrices, where we get a generalized Nevai conjecture about an L1-condition implying a Szegő condition. One key is a general new form of the Birman-Schwinger bound in gaps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008